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What is a Neural Network?

A Simple Neuron Activation Functions
Input ] ] 1
1 Sigmoid
Output o(z) = 1+‘13_33
I. f(x) ‘] -10 E 10
: Activation
Function o
Wi, i
L @ ReLU
max (0, x)
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What is a Neural Network?

A Fully Connected Layer is a layer where every node in the first layer is
connected to every node in the second layer.

Input Output
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Internal Covariate Shift (ICS)

- Distribution of each layer’s input changes during training as parameters
or previous layers change.

| = F,(F(u,6,),0,)
X = Fl(u, 91)
l — Fz(x, 92)

How can we reduce internal covariate shift?
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Towards Reducing ICS

What about whitening activations at every training step?

e +b A GD optimization does not
U X =x—Elx] ~ take into account that the
E[x] NZ normalization takes place.

If gradient step ignores the dependence of E[x] on b, then:
b < b+ Ab where Ab « _61/655
>u+((b+Ab)—E[u+ b+ Ab)l=u+b—E[u+ b]
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Batch Normalizing Transform (over a mini-batch)

« Two simplifications
* Normalize each scalar feature independently instead of jointly

* Each mini-batch produces estimates of the mean and variance of each activation

Input: Values of z over a mini-batch: B = {1 _,,};
Parameters to be learned: v, 8
Output: {y; = BN, g(x;)}

1 m
— — i // mini-batch
KB p— ; xr mini-dbatcn mean
1 m
0% — z:(acZ — un)? // mini-batch variance
1=1
Ti + :vi;—ug // normalize o
\Vogp t+ € * Normalization alone may change what
Yi < 7Zi + B = BN, g(z;) // scale and shift |~ the layer can represent
* Transformation inserted in the network
Algorithm 1: Batch Normalizing Transform, applied to can represent the identity transform

activation x over a mini-batch. 8
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Training with Batch-Normalized Networks

Input: Network N with trainable parameters O;

subset of activations {z(®)} K|

Output: Batch-normalized network for inference, N‘é‘lfl

1:
24
3:

53
6:

n < N // Training BN network

fork=1...Kdo
Add transformation y*) = BN7<k),5(k)(:c(k)) to
B (Alg.[1)
Modify each layer in Ni with input 2(*) to take
y*) instead

end for

Train Njy to optimize the parameters © U
{y®) gRIYE

Specify a subset of activations
and insert the BN transform for
each of them
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Inference with Batch-Normalized Networks

7. Nof < Nt // Inference BN network with frozen
// parameters

8: fork=1... K do
9. // Forclarity, z = 2%y = 4® g = ¥ et
10:  |Process multiple training mini-batches B, each of

size m, and average over them: Use the population
— statistics rather than
E[z] + Ep[us]

m 5 mini-batch ones
Var[a:] — mEB[O’B]

11:  In NBN, replace the transform y = BN,, 5(z) with

\/ Var[z]+e€ \/ Var[z]+e€
12: end for

10
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Batch-Normalized Convolutional Networks

Affine transformation followed by an element-wise nonlinearity

;@@u 2= g(BN(Ww))
\

nonlinearity such as
ReLU and Sigmoid

learnt parameters

For convolutional layers, jointly normalize all the activations in a mini-batch over all
locations

Mini-batch size

size of feature maps

11
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Advantages of Batch Normalization

* Enable higher learning rate

— Prevents small changes to the parameters from amplifying into larger and suboptimal changes in
activations in gradients

— Makes training more resilient to the parameter scale
OBN((aW)u)  OBN(Wn)
BN (W) = BN((|aW)u) du = T Bu
— OBN((aW)u) _ 1 9BN(Wu)
parameter scaled parameter d(aW) T ow

— Makes layer Jacobians to have singular values closer to 1, which is beneficial for training.

e Regularize the model

— atraining example is seen in conjunction with other examples in the mini-batch, and the training
network no longer producing deterministic values for a given training example. 12
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Experiments - Activations over Time

* Predict the digit class on the MINIST dataset E “
e 28X28 binary images, 3 hidden FC layers with 100

Num: 5 Num: 6 Num: 7 Num: 8 Num: 9

activations each, sigmoid non-linearity, cross-entropy loss - 6
* BN added to each hidden layer B 7 f f

1

Num: 0 Num: 1 Num: 2 Num: 3 Num: 4

;

09t 7

0811 — = = Without BN

07 1.0

10K 20K 30K 40K 50K -2

(a) (b) Without BN (c) With BN
Input distribution to sigmoid, shown as {15, 50, 85}""
percentiles
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Experiments - ImageNet Classification

e Predicting images out of 1000 possibilities

* Inception network mini-batch size 32, ReLU as nonlinearity
BN added to each nonlinearity

Replaced by two
Flter consecutive layers of
concatenation .
- 3x3 convolutions
/ \ |
1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling
A > 4

Previous layer

Inception module
14
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Experiments - ImageNet Classification

* Changes made to the network and its training parameters

— Increase learning rate

— Remove Dropout

— Reduce the L2 weight regularization

— Accelerate the learning rate decay

— Remove local response normalization

— Shuffle training examples more thoroughly

— Reduce the photometric distortion

15
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Experiments - ImageNet Classification (Single-network)

0.8
07h e T t""—"'—;__‘ ————————————— -+
f i Model Steps to 72.2% Max accuracy
06l ,” Inception 31.0 - 10° 72.2%
! ~ = = Inception BN-Baseline 13.3-10° 72.7%
1 ot b —baseline
osfr BN-x5 BN-x5 2.1 - 10° 73.0%
| —X
| oo DRGSR BN-x30 2.7 - 108 74 8%
"l' 4 Steps to match Inception BN-x5-Si ngId 69 8%
G 5M 10M 15M 20M 25M 30M
Single Crop validation accuracy of For Inception and the batch-normalized
Inception and its batch-normalized variants, the number of training steps
variants, vs. the number of training steps. required to reach the maximum accuracy

of Inception (72.2%), and the maximum
accuracy achieved by the network. 16
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Experiments - ImageNet Classification (Ensemble)

Model Top-1 error  Top-5 error
Googl.eNet ensemble - 6.67%
Deep Image low-res - 7.96%
Deep Image high-res 24 .88 7.42%
Deep Image ensemble - 5.98%
BN-Inception single crop 25.2% 7.82%
BN-Inception multicrop 21.99% 5.82%
BN-Inception ensemble 20.1% 4.9 %*

17
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How does Batch Normalization
help optimization?

18
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Preliminaries

* VGG-like architecture

* Image classification on
CIFAR-10

e Batch size of 128
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Are BN and ICS connected?

100 100 . Standard Standard + BatchNorm
(LR=0.1) (LR=0.1)
2 2
> & My
O . #*
© > 5
= —— Standard, LR=0.1 g —— Standard, LR=0.1 =
] 50 - Standard + BatchNorm, LR=0.1 ‘5 50 - Standard + BatchNorm, LR=0.1 3
é() - = Standard, LR=0.5 8 - = Standard, LR=0.5
o -~ = Standard + BatchNorm, LR=0.5 < -~ = Standard + BatchNorm, LR=0.5
£ =
£ 0 -
: A - :
LR A [} PR, - '\ —
oy f‘l [N \'","\l \\"\‘l "‘}:‘, M \’:.,‘ \" I'lv\ J “".‘I\'\"l §i 0 (Sstmiaieie e e iy ARG R (o e e R e el %
-l
0 5k 10k 15k 0 5k 10k 15k
Steps Steps

Little concrete evidence supporting the effect of BN on ICS!

20
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Connection between ICS and BN

/ N\

(1) Is the effectiveness of BN (2) Is BN's stabilization of
indeed related to ICS? layer input distributions even
effective in reducing ICS?

21
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(1) Is the effectiveness of BN related to ICS?

I— Is controlling both the mean and variance of distributions of layer
inputs directly connected to improved training performance?

- Experiment: Train with random noise after BN layers.
Algorithm 1 “Noisy” BatchNorm

1: % For constants 1.,,,, 1, Ty Tye
2:

3: for each layer at time ¢ do

4 a.ﬁ‘ j < Buatch-normalized activation for unit j and sample i

5%

6: for each j do > Sample the parameters (mf, v%) of D’ from D Noise drawn from
7 pt o~ U(=np,my) ) different distributions
8: ot ~U(l,n,)

9:

10: for each i do > Sample noise from D;L

2 b for each j do

12: mﬁ,j NU(F‘_T#’M+T#)

13: sii~N(o,rs)

3 t B i, t
14: Q; ; < Si ;" Qi; - m; ; 22
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(1) Is the effectiveness of BN related to ICS? (Cont'd)

Standard Standard + Standard + “ icv”’
BatchNorm "Noisy" BatchNorm N 0|Sy B N Sh OWS
100

o __ much more ICS
— 3 ’{:

> [} W

g o0 2 3 A than standard
| 3 =

5 T ‘

O 60 o

< #

o @

g . o %

= -4 =

E 3 1.5 43 s 2 s

- — Standard e

29 — Standard + BatchNorm #*
=== Standard + "Noisy" Batchnorm a; K E
2 ¢
0 sk 10k agie [ cR——
Steps

23
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(1) Is the effectiveness of BN related to ICS? (Cont'd)

Layer#:13 Layer#:9  Layer#:2
Layer#:13 Layer#:9  Layer#:2

“Noisy” BN show much more ICS than standard

24
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(1) Is the effectiveness of BN related to ICS? (Cont'd)

2 2
[Lde 4+ 1 — Kl . |of, . — of|
o~ Standard
# Standard + BatchNorm
‘63 Standard + "Noisy" Batchnorm
>
(o]
-l

Large variations in mean and variance in each step for “Noisy” BN.

25
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Connection between ICS and BN

/ N\

(1) Is the effectiveness of BN (2) Is BN's stabilization of
indeed related to ICS? layer input distributions even
l effective in reducing ICS?
No!

26
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(2) Is BN reducing ICS?

Definition 2.1. Let L be the loss, W\", ..., W,gt) be the parameters of each of the k layers and

(D), y)) be the batch of input-label pairs used to train the network at time t. We define internal
covariate shift (ICS) of activation i at time t to be the difference |Gy ; — G} ;||2, where

Gti = VLW, ..., WD 2™, 4 ®)

e = th_(,)c(wl““), L WERD WO W w0 @),

* G.; = gradient of the layer parameters that would be applied during a simultaneous update of all layers.

* G'y; = same gradient after all the previous layers have been updated with their new values.

27



TEXAS

‘The University of Texas at Austin

(2) Is BN reducing ICS?

Visualizing the setup using Neural Networks

/4 G i

28
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(2) Is BN reducing ICS?

Layer #9 Layer #17

o @ —— Standard :35: : P-‘vf N AAA A AR AAAN '\.r PP A Ah A S A
©gq . Standard + & 10 V"\_\
$ 510 BatchNorm —~— ~—
e & ! ' i
© T c
- -'_- < 0

i : U\/W wwm

o

DLN

mm) For BN, it appears that G and G’ are almost uncorrelated.

mm) Controlling the distributions layer inputs might not even
reduce ICS!

29
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Connection between ICS and BN

/

(1) /s the effectiveness of BN
indeed related to ICS?

|

No!

\

(2) Is BN’s stabilization of
layer input distributions even
effective in reducing ICS?

|

No!

30
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Why does BN work?

e \

3. Is BN the best (only?) way to

1. Smoothening effect of BN
J smoothen the landscape?

Y
2. Exploration of the optimization landscape

31
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1. The smoothening effect of BN

Recall that f is L-Lipschitz if
|f (x1) = f(x2)| < Lllxy — x2][, ¥ x4, x3

m) BN improves the Lipschitzness of the loss function.

h The loss changes at a smaller rate

Recall that f is f-smooth if
[V (x1) = V()| < Bllxy — %20,V %1, %2

m) BN'’s re-parametrization makes gradients of the loss function more Lipschitz.

h The loss exhibits a significantly better “effective” f-smoothness. -
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1. The smoothening effect of BN (Cont’d)

m) BN'’s re-parametrization makes gradients more reliable and predictive.

|

Can now take a larger step in the direction of the computed gradient
without the danger of having

/ O\

vanishing gradients or exploding gradients

m) BN'’s re-parametrization makes the training significantly faster and less

sensitive to hyperparameter choices.
33
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2. Exploration of the optimization landscape

Stability of the loss function < Lipschitzness

- Goal: Demonstrate the impact of BN on the stability of the loss function.

e (a) Compute the gradient of the loss at each step in the training process and measure how the
loss changes as we move in that direction.

| I (b) Compute the [, distance between the loss gradient at a given point of the training and the
gradients corresponding to different points along the original gradient direction.

10*

45
mm Standard 250 B Standard —— Standard
§ i Standard + BatchNorm 40 ——— Standard + BatchNorm
< 200 -
a g @
3 g 2 30
@ Y150 £
g - -
c o o 25
3 o (=]
$ o 100 g 20
3 2 Rixs
10° 8 50
(U] 10

(=)

0 5k 10k 15k 5k 10k 15k 0 5k 10k 15k
Steps Steps Steps

o

(a) loss landscape (b) gradient predictiveness (c) “effective” 3-smoothness
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3. Is BN the best (only?) way to smoothen the landscape?

Is this smoothening effect a unique feature of BN?

- Study a few natural data statistics-based normalization strategies

| Schemes that fix the 15t order moment, then normalize the activations by the average of their
[,-norm (for p=1,2,0) before shifting.

Distributions of layer inputs are no longer Gaussian-like. $€

— l,-normalization techniques lead to /arger distributional covariate shift, yet still yield
improved optimization performance.

[
(=]
o

8
g & Standard Standard+BN Standard+l, Standard+l, Standard+l,,
3 60 :
9 = Standard g =
‘; 40 = Standard + BatchNorm H
I -~~ Standard + L,
£ 5 --~- Standard + L
’g -~~~ Standard + L. .

: " Histograms

Steps

(a) VGG 35
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3. Is BN the best (only?) way to smoothen the landscape?

400
100 "0 mmm Standard mmm Standard + L Al | th e
g b4 P Standard + Batchnorm i Standard + L.
== qC.) Standard + L3 . o
> E normalization
S S
5 = S h h
o o schemes snow
< o
g £ “smoother” loss
b - = Standard ——— Standard + L> -rau
= == Standard + BatchNorm —-—— Standard + L. it I d
= ——— Standard + L3 (&) an Sca pe.
) S5k 10k 15k 10k 15k
Steps Steps
(a) (c)
L]
[ ]
I Standard am Standard + L 45 - Standard Standard + Lo ConCI u5|on .
I Standard + Batchnorm s Standard + Lo 40 == Standard + Batchnorm = Standard + L.
2 .o Standard + Ly . ~— Standard + L; BatchNorm may
o 4}
o . .
g £ not be unique in
= o 25
m© o . .
= £ 20 its improved
0 A
s X 15

10°

performance.

10

0 5k 10k 15k 0 5k 10k 15k
Steps Steps
(b) (d) 36



@ TEXA.S WHAT STARTS HERE CHANGES THE WORLD
it Austin

‘The University of Texas at Au:

Theoretical Analysis

- Explore the effect of BN on the optimization landscape from a theoretical perspective.
- Consider an arbitrary linear layer in a Deep Neural Network (DNN).

Compare the theoretical investigations for two network architectures: (a) the Vanilla DNN
(i.e. DNN without BN); (b) same network as in (a) but with a single BN layer inserted after
the fully-connected layer W.

(a) Vanilla Network (b) Vanilla Network + Single BN layer
BatchNorm
— Yy X y y < e
W /s —i i
\ Y
= Wx “whitened” v, B are

version of y constants 37
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CAUTION: MATH AHEAD!

38
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Theoretical Analysis

- Expectation: BN causes the landscape to be more well-behaved, inducing favorable
properties in Lipschitz-continuity and predictability of the gradients.

0 ||Vij ” » Captures the Lipschitzness of the Loss.

e B-smoothness ——» Conveys how predictive the gradient is in terms of
function minimization.

39
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a "Vij” » Captures the Lipschitzness of the Loss.

Theorem 4.1 (The effect of BatchNorm on the Lipschitzness of the loss). For a BatchNorm network
with loss L and an identical non-BN network with (identical) loss L,

vij — ”vwﬁllz_l@vv ,-£>2— l<vyj »'gj>2 :
m m

Contributes to the relative

“flatness” since o is Grows _ Correlation between the
relatively large. quadratically in two terms exists — the term
the dimensjon is positive.
=

/

Decreases significantly
40
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a fB-smoothness = Conveys how predictive the gradient is in terms of
function minimization.

Theorem 4.2 (The effect of BN to smoothness). Let §; = V. L and H;; = —&)yégy. be the gradient
J J
and Hessian of the loss with respect to the layer outputs respectively. Then

—~ ’ —~ T] —~
AT  8r N [ oc oL oy B
, A0 & L = — | - i Ui
(Vs,£) T (VwL) < % ( ay,-) ( ayj) —— (9. 95)

N

~ (12
123
'()yj

~.. These two terms //
are positive

Two Conditions:

1. Hessian is PSD if the Loss is locally convex, which is true for the case of deep networks
with a piecewise linear activation functions and a convex Loss at the final layer.

2. (¥, ,8,)>0 as long as the negative gradient g, is pointing towards the minimum of the
Loss.

If these two conditions are satisfied, then the steps taken by the BN network are
more predictive than those of the standard network.

41
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Theorem 4.4 (Minimax bound on weight-space Lipschitzness). For a BatchNorm network with loss
L and an identical non-BN network (with identical loss L), i

- - S 2 0 o =112 2 — 2 A =
gi = ||I)I(1|E|’%(,\”vw£” ; g; = ”r)rfllz'l%cl\”VwE“ =>. mt A (Vg:t‘!b) )

Positive ter

- g}- has a small upper bound

42
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SIMULATIONS

43
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airplane =.% V.=.=q
automobile E E ‘ h E ‘
. CIFAR10 L S omh s B
%
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xperimen - SEECEIidas
w  AEsOEL R
- gEEsEasede

horse 2 ]
s EARLE == P
wo CE

Conv2d_1
3x3 kernel Relu Conv2d 1
activation 3,3 kemel Relu MaxPool
activation 2%x2 Dropout Conv2d 1
3x3 kernel Relq Conv2d_1
activation 3.3 amal act?lea:rion MaszzooI 5 .
X ropou Dense Softmax
* Loss: categorical cross entropy 5 Relu
.. ense  activation
*  Optimizer: RMSprop N
Dropout

* Metric: accuracy

44
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® BN1

Training Accuracy

0.50

<200 @® NoBN
@ BN5

0450 @® AlBNs All BNs
@® BN6

0400

10.00 2000 3000 4000 5000 6000 7000 80.00 9000 100.0

Epochs 46
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EX p e ri m e nt Without Noise With Noise
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