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Outline
• Introduction to Neural Networks

• Internal Covariate Shift (ICS)

• Batch Normalization (BN) – the works

• How does BN help optimization?

• Simulations
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What is a Neural Network?

Activation 
Function

Output

Input

A Simple Neuron Activation Functions
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What is a Neural Network?
A Fully Connected Layer is a layer where every node in the first layer is 
connected to every node in the second layer.
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Convolutional Neural Network
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Internal Covariate Shift (ICS)

•  

How can we reduce internal covariate shift?
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Towards Reducing ICS
What about whitening activations at every training step? 

 

 

 

 

GD optimization does not 
take into account that the 
normalization takes place.
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Batch Normalizing Transform (over a mini-batch)

• Normalization alone may change  what 
the layer can represent

• Transformation inserted in the network 
can represent the identity transform

• Two simplifications
• Normalize each scalar feature independently instead of jointly

• Each mini-batch produces estimates of the mean and variance of each activation
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Training with Batch-Normalized Networks

Specify a subset of activations 
and insert the BN transform for 
each of them 
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Use the population 
statistics rather than 
mini-batch ones

Inference with Batch-Normalized Networks
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Batch-Normalized Convolutional Networks
• Affine transformation followed by an element-wise nonlinearity

• For convolutional layers, jointly normalize all the activations in a mini-batch over all 
locations

size of feature maps pq

 m

learnt parameters nonlinearity such as 
ReLU and Sigmoid

Mini-batch size 
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• Enable higher learning rate

– Prevents small changes to the parameters from amplifying into larger and suboptimal changes in 
activations in gradients

– Makes training more resilient to the parameter scale

– Makes layer Jacobians to have singular values closer to 1, which is beneficial for training.

• Regularize the model

– a training example is seen in conjunction with other examples in the mini-batch, and the training 
network no longer producing deterministic values for a given training example.

Advantages of Batch Normalization

parameter scaled parameter
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Experiments - Activations over Time
• Predict the digit class on the MNIST dataset 

• 28X28 binary images, 3 hidden FC layers with 100 
activations each, sigmoid non-linearity, cross-entropy loss

• BN added to each hidden layer

Input distribution to sigmoid, shown as {15, 50, 85}th 
percentiles
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Experiments - ImageNet Classification
• Predicting images out of 1000 possibilities 

• Inception network mini-batch size 32, ReLU as nonlinearity

• BN added to each nonlinearity
Replaced by two 
consecutive layers of 
3x3 convolutions
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Experiments - ImageNet Classification
• Changes made to the network and its training parameters

– Increase learning rate

– Remove Dropout

– Reduce the L2 weight regularization

– Accelerate the learning rate decay

– Remove local response normalization

– Shuffle training examples more thoroughly

– Reduce the photometric distortion
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Experiments - ImageNet Classification (Single-network)

Single Crop validation accuracy of 
Inception and its batch-normalized 
variants, vs. the number of training steps.

For Inception and the batch-normalized 
variants, the number of training steps 
required to reach the maximum accuracy 
of Inception (72.2%), and the maximum 
accuracy achieved by the network. 16



Experiments - ImageNet Classification (Ensemble)
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How does Batch Normalization 
help optimization?
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Preliminaries

• VGG-like architecture 
• Image classification on 

CIFAR-10
• Batch size of 128
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Are BN and ICS connected?

Little concrete evidence supporting the effect of BN on ICS!
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Connection between ICS and BN

(1) Is the effectiveness of BN 
indeed related to ICS?

(2) Is BN’s stabilization of 
layer input distributions even 
effective in reducing ICS?
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(1) Is the effectiveness of BN related to ICS?
Is controlling both the mean and variance of distributions of layer 
inputs directly connected to improved training performance? 

Experiment: Train with random noise after BN layers. 

Noise drawn from 
different distributions
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“Noisy” BN shows 
much more ICS 
than standard

(1) Is the effectiveness of BN related to ICS? (Cont’d)
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“Noisy” BN show much more ICS than standard

(1) Is the effectiveness of BN related to ICS? (Cont’d)
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Large variations in mean and variance in each step for “Noisy” BN. 

(1) Is the effectiveness of BN related to ICS? (Cont’d)
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Connection between ICS and BN

(1) Is the effectiveness of BN 
indeed related to ICS?

(2) Is BN’s stabilization of 
layer input distributions even 
effective in reducing ICS?

No!
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(2) Is BN reducing ICS?
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(2) Is BN reducing ICS?

 

        

 

Visualizing the setup using Neural Networks
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Controlling the distributions layer inputs might not even 
reduce ICS!

(2) Is BN reducing ICS?

DLN 
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Connection between ICS and BN

(1) Is the effectiveness of BN 
indeed related to ICS?

(2) Is BN’s stabilization of 
layer input distributions even 
effective in reducing ICS?

No! No!
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Why does BN work?

1. Smoothening effect of BN

2. Exploration of the optimization landscape

3. Is BN the best (only?) way to 
smoothen the landscape?

31



1. The smoothening effect of BN

 

BN improves the Lipschitzness of the loss function.

The loss changes at a smaller rate

BN’s re-parametrization makes gradients of the loss function more Lipschitz.
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1. The smoothening effect of BN (Cont’d)

BN’s re-parametrization makes gradients more reliable and predictive.

Can now take a larger step in the direction of the computed gradient 
without the danger of having

vanishing gradients exploding gradientsor

BN’s re-parametrization makes the training significantly faster and less 
sensitive to hyperparameter choices.
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2. Exploration of the optimization landscape
 

Goal: Demonstrate the impact of BN on the stability of the loss function. 
(a) Compute the gradient of the loss at each step in the training process and measure how the 
loss changes as we move in that direction. 
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3. Is BN the best (only?) way to smoothen the landscape?
Is this smoothening effect a unique feature of BN?

Study a few natural data statistics-based normalization strategies
 

Distributions of layer inputs are no longer Gaussian-like.

 

Histograms

Standard Standard+BN    
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All the 
normalization 
schemes show 
“smoother” loss 
landscape.

Conclusion: 
BatchNorm may 
not be unique in 
its improved 
performance.

3. Is BN the best (only?) way to smoothen the landscape?
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Theoretical Analysis

Explore the effect of BN on the optimization landscape from a theoretical perspective.

Consider an arbitrary linear layer in a Deep Neural Network (DNN).

Compare the theoretical investigations for two network architectures: (a) the Vanilla DNN 
(i.e. DNN without BN); (b) same network as in (a) but with a single BN layer inserted after 
the fully-connected layer W.

(a) Vanilla Network (b) Vanilla Network + Single BN layer
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CAUTION: MATH AHEAD!
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Theoretical Analysis

Expectation: BN causes the landscape to be more well-behaved, inducing favorable 
properties in Lipschitz-continuity and predictability of the gradients.

 Captures the Lipschitzness of the Loss.1

 Conveys how predictive the gradient is in terms of 
function minimization.

2
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Grows 
quadratically in 
the dimension 

Decreases significantly

 

 Captures the Lipschitzness of the Loss.1
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 Conveys how predictive the gradient is in terms of 
function minimization.

2

Two Conditions:
1. Hessian is PSD if the Loss is locally convex, which is true for the case of deep networks 
with a piecewise linear activation functions and a convex Loss at the final layer.

2.               >0 as long as the negative gradient      is pointing towards the minimum of the 
Loss.

These two terms 
are positive

If these two conditions are satisfied, then the steps taken by the BN network are 
more predictive than those of the standard network. 41



Positive terms

has a small upper bound

42



SIMULATIONS
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Experiment
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• Loss: categorical cross entropy
• Optimizer: RMSprop
• Metric: accuracy

CIFAR10
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Experiment

Conv2d_1
3x3 kernel Relu 

activation
Conv2d_1
3x3 kernel Relu 

activation
MaxPool

2x2 Dropout Conv2d_1
3x3 kernel Relu 

activation
Conv2d_1
3x3 kernel Relu 

activation
MaxPool

2x2 Dropout
Relu 

activation 
+ 

Dropout
Dense

Dense Softmax

Adding Batch Normalization

BN1
BN2

BN3 BN4
BN5

BN6

45



Experiment
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Experiment
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Experiment
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