4

Using Supervised Learning to WN
at Pokemon.

Bobby King

Jessica Gettings
Xuewen “May” Yao
Zeling “Angie” Zhang

Proposal Review

e Figure out which team of 3 pokemon yields the highest chance of winning a
battle, assuming all Pokemon are at the same level

e Determine each Pokemon’s ideal set of 4 moves

e Determine which move to use in a given situation and its confidence in
leading the team to a win

Overview of Presentation

e How we simulated and generated battle data (Bobby)

e How we determined which Pokemon led to best results (Jessica)

e How we determined which 4 moves a Pokemon should have at its disposal
(Angie)

e How we determined which move a Pokemon should use in a specific situation
(May)

Battle Simulation and Generation

e First, determined which teams of 3 we wanted to analyze
o Used permutations instead of combinations, since which pokemon is played first does affect
the outcome of a battle
o Forall 151 pokemon, there's over 3 million different team permutations
o So we narrowed it down to the top 50 pokemon by average stats
m Now only 117600 team permutations to analyze.

e Round robin would be over 1 billion battle simulations

o Would've taken many days to simulate
o Instead, we did 5 random battles per team as team 1.
m Reduces the number of battles to analyze to ~1 million.

UML Diagram - Caching Information

TypeMapping

+ get():Map<TypeEnum, Type>

5 i

+ getAll():Map<String, PokemonWithTypes>

oveList

+ getAll():Map<String, Move>

Type
+ typeEnum:TypeEnum |
+ weaknesses:Set<TypeEnum> T TypeEnum
+ resistances:Set<TypeEnum>
+ nullifications:Set<TypeEnum> ﬂ\
1
1
1
1
s i I
1
1
1
1
I Pokemon
PokemonWithType + name:String i
5 - hp:integer
+ pokemon:Pokemon | N i :
<> + types:Set<TypeEnums> =>1+ defense:Integer
+ attack:Integer
+ speed:integer
+ special:integer
Move
+ name:String
+ type:TypeEnum
<1+ power:Integer

+ accuracy:Integer
+ pp:integer
+ isSpecial:Boolean

Battle Simulation - Object Design

e BattleTree
o Contains States and Edges, in the form of a Directed Tree Graph

e State
o Contains the current state of every pokemon on every team, and whether we are at an initial
state or possibly at an end state.
e Edge
o Contains what moves each pokemon did to cause the transition from the prevState to the
nextState.

Battle Simulation - Strategy

e Looking at all possible paths from the initial state to the end states would

yield a battle graph that is too large to generate and analyze.

o Assuming a pokemon can use any one of 4 moves and an average depth of 10, we would have
16*10 possible states.

e So instead, we used a simple strategy to yield the best possible results:
o If a pokemon can do a move that yields enough damage deemed “worth it", it'll do that move.
o If a pokemon cannot do a move that meets that threshold, we instead switch to a pokemon
that can take the least amount of damage from what move the opponent would've picked
assuming they follow the first step.
o Thisyields a linear battle graph of ~12-14 states deep.

Special Move cases

e Some moves require special rules that deviate from typical workflow
o First-Turn 2-turn moves - Hyper Beam
m Pokemon must recharge and cannot be switched for 1 turn after using this move
o Second-Turn 2-turn moves - Dig, Fly, Sky Attack
m Pokemon spends the first turn preparing, thus cannot be switched in the next turn and
must use the move regardless of pokemon switch from opponent.
o Ignored special cases
m Dream Eater requires the opponent to be sleeping, so we just ignore this move.
m Earthquake deals double damage if the opponent is preparing for dig, we're ignoring this.
m Thunder will always hit if opponent is preparing for fly, we ignore accuracy in general for
the sake of simulation.
m Self Destruct and Explosion kill the pokemon using those moves
so we ignore them.

UML Diagram - Battle Simu

BatlteTree

+ states:Map<String, State>

+ edges:Map<String, Edge>

+ initStateld: String

+ stateToEdgeMap:Map<String, Set<String>>

.

Edge
+ id:String
+ prevStateld:String
+ nextStateld:String
+ p1Move:MoveAction
+ p2Move:MoveAction

{]
i
i
i
i
W
MoveAction
- .
LWWMMI e

+ move:Optional<Move>
+ pSwitch:Optional<PokemonStatus>

ation

State

+ id:String

+ t11d:String

+ t21d:String

+ t1Status:TeamStatus

+ t2Status: TeamStatus

+ p1Status: PokemonStatus

“|+ p2Status: PokemonStatus

+ isInitState:Boolean
+ isEndState:Boolean

v

TeamStatus

+ p1Status:PokemonStatus
+ p2Status:PokemonStatus
+ p3Status:PokemonStatus

+ name:String
+ currentHP:String

Generated Data Result

e We have ~1 million simulated battles, stored in many json files.

e “teams.json” contains a JSON object representing a key/value pair, id to team.

e ‘“battles-id.json” is a list of simulated battles (1 file per team for indexing
purposes).

e These can be read in using FasterXML library for java that can read in json
files and streams into POJOs.

Pokemon Analysis

e We want to determine the best team of 3 Pokemon

e Generated data contains only 5 battles per team
o This takes permutations into account, but even if it didn't, we would still only have 30 battles
per team
o Not enough to differentiate “good” from “best”

e Our Solution: a priori algorithm

o Identify the individual Pokemon that most frequently appear on winning teams
o Combine the top Pokemon into pairs and repeat the analysis to find the best-performing pairs
o Select the team that contains the three best pairs of Pokemon

Choosing the Best Pokemon

e Each input file contains the the outcomes of all battles in which a given
permutation of 3 is designated “Team 1”
e Anindex of Pokemon to teams was created for easy reference
e Forevery input file:
o Determine which Pokemon belong to the team
o Map battle output data (number of wins, total number of battles) to a running tally for each

Pokemon on the team
o wins/battles ratio = confidence

e Because Pokemon are equally distributed across teams:
o Support is the same for every team

e Alltold, each Pokemon belongs to 7,056 teams and
participates in ~35,000 battles

Preliminary Top Three

Lapras
Water/Ice
Confidence: .7225

Starmie
Water/Psychic
Confidence: .7872

Move Analysis

e Determine the best 4 moves for the top listed Pokemon
e Thisis done by determining the most frequent moves for each Pokemon in all
the battles they took part in.

Move Analysis - cont'd

e Looked at each battle state and determined which move was used along its

corresponding edge
o Since each move made is the optimal move, we just count up how often each Pokemon used
each move.

e Chose the 4 most frequent moves as that Pokemon’'s moveset

Move Analysis - Some Results

Starmie Lapras
Hydro Pump - Water
Thunder - Electric
Psychic - Psychic
Blizzard - Ice

Hydro Pump - Water
Thunder - Electric
Blizzard - Ice
Waterfall - Water

Mewtwo
Psychic - Psychic
Earthquake - Ground
Blizzard - Ice
Hyper Beam - Normal

Situation Analysis

e Given a Pokemon doing battle and its current opponent, which move would
yield the best results? What's the confidence that the move leads to a win for

that Pokemon's team?
o Either the move that deals the most damage against its opponent, or a switch
o Want to find out the effects of the current move on the end result of the battle

Situation Analysis

e There are 50 Pokemon in total

e Not counting “mirror matches,” (Pokemon fighting themselves), there are
2450 pairs of attacker and defender in total

e For each attacker-defender pair, find all their battles

e For each battle, find the move the attacker uses, walk down the tree, and
obtain the result of the whole game

e Calculate the confidence of the move--how often this move leads to a win
against the defender

Situation Analysis - Results

Attacker Defender Move Confidence

Rock Slide 0.798153

Mewtwo Charizard?" <

Earthquake 0.998177

Mewtwo Arcanine Earthquake 0.796018

Next Steps for future work on this

e Phase 2 of Data Generation
o Come up with other strategies to compare against our current strategy.
o See if we can have more branching paths if we move this to a computing cluster for analysis.
e Phase 2 of Pokemon Analysis:
o Select teams that consist only of top-performing pairs of Pokemon, and generate more battles
for those teams in order to confirm which one is the best
e Phase 2 of Pokemon next move analysis

o Create a way to update move analysis with more simulated battles without
restarting the algorithm.

Future Work needed for modern day Pokemon

e There would be a few modifications needed to adapt our algorithms to the

most recent versions of the game
o New Pokemon with new abilities would need to be hard-coded in
o Update the damage dealing algorithm to account for changes in engine

System Architecture

Note that
: :

+getAllConfidence(Set<String>, Integer) |

- —— >

+PokemonWinAnalysis(Set<Siring>) | PokemonMoveCountAnalysis is
b self contained and doesn’t use

TeamReader or ReadlnDataOb;.

%G___

-

T
I
I
i
I
I
I
i
I
- I
PokemonMoveCountAnalysis I
+main(String(]) : +pokemonTeamindex():Map<String, Set<String>>
: [> +readTeamsFromFile(): Map<String, Team>
|
: i
i |
i |
i |
I : ReadinDataObj
: lL +battlesForTeam(String):Map<String, BattleTree>
|
|
|
|
| K
| |
NextMoveAnalysis ﬂxmmm&dmmmmaﬁm :
+main(String(]) i +PokemonSituationAnalysis(String, String) :

+getMoveConfidence():Map<String, Double>

Descriptions of Main Functional Components

e Pokemon, Team, Move, and BattleTree objects are used to simulate battles
and generate data for each battle

e Additional Analysis classes are used to analyze the data
o Pokemon Analysis (find the Pokemon with the best track records)
o Move Analysis (find the moves with the best track records)
o Situation Analysis (find the best move in context)

Experimental Results #1: Top Pokemon

Lapras Kingler Joteon Poliwrath Venusaur Gyarados Golduck Vaporeon Kangaskhan
Starmie Mewtwo Blastoise Raichu Cloyster Sandslash Electrode Machamp Snodax

0.9

0.8

0.7

0.

(=]

0.

[&)]

0.

E

0.

W

Win Ratio (Confidence)

0.

v]

0.

—

o

Ir'S

Top Pai

-— Confidence

fidence for Pairs of Pokemon (> .8)

Experimental Results #2

Con

0.9

HOGRTEN alues
_— nuorey seiden
INEsnuUap e
[YieIMI|O aElg
b e & alwes
| mm._nmn_ . \I dweyoep
QUIAS asio)se|g
- nuoiey — Bues
sesden) Pra:
UGS h A uoayjor
seude) = yse|spues
INESNUap L
B o— B i
7 L allels
XBlousg i
I / — 3luleg
— QMN — Ja|Bury
J dueyosn alues
EEEEE— oy e 8lWelg
NSRS alues
e 8 8§ 3
© o < o
o o

Experimental Results #3 - Top Teams

0.95
0.94 -
0.93
0.92
0 0.91
&
o
2 0.9~
S
E 0.89
B
= 0.88
2 & & & & H N &
09 'b&\\ é@\ fo‘&\ 66\\ <9{\ o"fb & '@Q fé@\
\\0(\ G_,\ 9\ ‘3\ %\ =) \\00 \\0(\ .gl. 6\
@ & & R & & @) & L
X 2 Q W <)
& R K 8 # N & & X &
N & \% 2 G s < &
i Py Y ™ &) &)
\© & o ny & 2 @,S’p ©
P N AR L Y S
N @ A &é‘ ¥ N Q

Team of3 Pokemon

Experimental Results #4: Top 4 Moves Each

300000
250000 -
W Hydro Pump
» Earthquake
200000 - m Thunder
Psychic
W Blizzard
150000 - == Petal Dance
‘ m Rock Slide
| B Hyper Beam
100000 - Waterfall
m Sludge
® Thrash
50000 |

Venusaur Sandslash

System API (see README.md in Source Code)

e ./gradlew runDataGenerator - Simulates battles for teams of 3 found in
“PokemonToAnalyze” file. Takes in arguments for determining which teams to
select on and how many battles to simulate.

e ./gradlew runPokemonAnalysis 1" Looks at the battle trees for every
pokemon in the “PokemonToAnalyze” file and determine the confidence for
each pokemon, pair of pokemon, or team based on humber argument.

e ./gradlew runMoveAnalysis' Looks at the battle trees for each pokemon to
determine how often each move is used to determine the four most common.

e ./gradlew runNextMoveAnalysis' Looks at the battle trees fo

each pokemon to determine what move to use against the

opponent and the confidence that it leads to a win

Data Structures

e To help with quick indexing, almost everything is stored in memory as a hash

map, generated from a JSON file.
o 0(1) fetching since it's by ID, and is predetermined when data was generated.

e Also used Multi-Threaded runnable tasks for all the analysis code so that we

can eventually port this to work on a cluster instead of a single computer.
o Data Generation is not as thread safe due to the complexity of that code.

Sample Outputs - Pokemon Analysis Output

$./gradlew runPokemonAnalysis -Dexec.args=3
:compiledava UP-TO-DATE

:processResources UP-TO-DATE

:classes UP-TO-DATE

:runPokemonAnalysis

[Blastoise Sandslash Starmie], 0.8890356671070013
[Blastoise Lapras Machamp], 0.8841544607190412
[Blastoise Kangaskhan Kingler], 0.6849087893864013
[Blastoise Mewtwo Kingler], 0.8546875

[Blastoise Jolteon Kangaskhan], 0.8378839590443686
[Raichu Snorlax Venusaur], 0.7496087636932708

BUILD SUCCESSFUL

Sample Outputs - move-analysis.json

"Mewtwo" : {

"Psychic" : 666,
"Thunder" : 73,
"Earthquake™ : 521,
"Rock Slide" : 222,
"Hyper Beam" : 259,
"Blizzard" : 525,
"Double-Edge" : 215,

"Fire Blast" : 88
by

Sample Outputs - next-move-analysis.json

, {"attacker":"Sandslash", "defender":"Electrode", "move" :"Earthquake", "confidence":0.86427598
72900591}

, {"attacker":"Mewtwo", "defender" :"Muk", "move" :"Psychic", "confidence":0.9982911825017088}

, {"attacker":"Sandslash", "defender":"Jolteon", "move" :"Thrash", "confidence":1.0}

, {"attacker":"Blastoise", "defender" :"Articuno", "move" :"Rock
Slide","confidence":0.9086193745232647}

, {"attacker" :"Mewtwo", "defender":"Electrode", "move" :"Thrash", "confidence":1.0}

, {"attacker":"Sandslash", "defender":"Dewgong", "move" :"Rock
Slide","confidence":0.5081912957140493}

, {"attacker":"Blastoise", "defender":"Muk", "move" :"Earthquake", "confidence":0.78641180137128
61}

, {"attacker":"Mewtwo", "defender":"Jolteon", "move" :"Earthquake", "confidenc
72}

Good Points and Lessons Learned

e We were continually surprised by the sheer quantity of data generated, and
had to keep finding ways to prune it down in order to keep processing times
under control

e We investigated the free AWS service as a way to process data, but the virtual
machines available to us had less capacity than our personal machines.

e We have tried some AWS services, but still we need integrate more
components of AWS services to implement the entire process.

e We learned how complicated Pokemon battles can get!

