
Using Supervised Learning to Win 
at Pokemon.
Bobby King
Jessica Gettings
Xuewen “May” Yao
Zeling “Angie” Zhang



Proposal Review

● Figure out which team of 3 pokemon yields the highest chance of winning a 
battle, assuming all Pokemon are at the same level

● Determine each Pokemon’s ideal set of 4 moves
● Determine which move to use in a given situation and its confidence in 

leading the team to a win



Overview of Presentation

● How we simulated and generated battle data (Bobby)
● How we determined which Pokemon led to best results (Jessica)
● How we determined which 4 moves a Pokemon should have at its disposal 

(Angie)
● How we determined which move a Pokemon should use in a specific situation 

(May)



Battle Simulation and Generation

● First, determined which teams of 3 we wanted to analyze
○ Used permutations instead of combinations, since which pokemon is played first does affect 

the outcome of a battle
○ For all 151 pokemon, there’s over 3 million different team permutations
○ So we narrowed it down to the top 50 pokemon by average stats

■ Now only 117600 team permutations to analyze.

● Round robin would be over 1 billion battle simulations
○ Would’ve taken many days to simulate
○ Instead, we did 5 random battles per team as team 1.

■ Reduces the number of battles to analyze to ~1 million.



UML Diagram - Caching Information



Battle Simulation - Object Design

● BattleTree
○ Contains States and Edges, in the form of a Directed Tree Graph

● State
○ Contains the current state of every pokemon on every team, and whether we are at an initial 

state or possibly at an end state.

● Edge
○ Contains what moves each pokemon did to cause the transition from the prevState to the 

nextState.



Battle Simulation - Strategy

● Looking at all possible paths from the initial state to the end states would 
yield a battle graph that is too large to generate and analyze.

○ Assuming a pokemon can use any one of 4 moves and an average depth of 10, we would have 
16^10 possible states.

● So instead, we used a simple strategy to yield the best possible results:
○ If a pokemon can do a move that yields enough damage deemed “worth it”, it’ll do that move.
○ If a pokemon cannot do a move that meets that threshold, we instead switch to a pokemon 

that can take the least amount of damage from what move the opponent would’ve picked 
assuming they follow the first step.

○ This yields a linear battle graph of ~12-14 states deep.



Special Move cases

● Some moves require special rules that deviate from typical workflow
○ First-Turn 2-turn moves - Hyper Beam

■ Pokemon must recharge and cannot be switched for 1 turn after using this move
○ Second-Turn 2-turn moves - Dig, Fly, Sky Attack

■ Pokemon spends the first turn preparing, thus cannot be switched in the next turn and 
must use the move regardless of pokemon switch from opponent.

○ Ignored special cases
■ Dream Eater requires the opponent to be sleeping, so we just ignore this move.
■ Earthquake deals double damage if the opponent is preparing for dig, we’re ignoring this.
■ Thunder will always hit if opponent is preparing for fly, we ignore accuracy in general for 

the sake of simulation.
■ Self Destruct and Explosion kill the pokemon using those moves, 

so we ignore them.



UML Diagram - Battle Simulation



Generated Data Result

● We have ~1 million simulated battles, stored in many json files.
● “teams.json” contains a JSON object representing a key/value pair, id to team.
● “battles-id.json” is a list of simulated battles (1 file per team for indexing 

purposes).
● These can be read in using FasterXML library for java that can read in json 

files and streams into POJOs.



Pokemon Analysis

● We want to determine the best team of 3 Pokemon
● Generated data contains only 5 battles per team

○ This takes permutations into account, but even if it didn’t, we would still only have 30 battles 
per team

○ Not enough to differentiate “good” from “best”

● Our Solution: a priori algorithm
○ Identify the individual Pokemon that most frequently appear on winning teams
○ Combine the top Pokemon into pairs and repeat the analysis to find the best-performing pairs
○ Select the team that contains the three best pairs of Pokemon



Choosing the Best Pokemon

● Each input file contains the the outcomes of all battles in which a given 
permutation of 3 is designated “Team 1”

● An index of Pokemon to teams was created for easy reference
● For every input file:

○ Determine which Pokemon belong to the team
○ Map battle output data (number of wins, total number of battles) to a running tally for each 

Pokemon on the team
○ wins/battles ratio = confidence

● Because Pokemon are equally distributed across teams:
○  Support is the same for every team

● All told, each Pokemon belongs to 7,056 teams and 
participates in ~35,000 battles



Preliminary Top Three

Starmie
Water/Psychic 
Confidence: .7872

Mewtwo
Psychic 
Confidence: .663

Lapras
Water/Ice
Confidence: .7225



Move Analysis

● Determine the best 4 moves for the top listed Pokemon
● This is done by determining the most frequent moves for each Pokemon in all 

the battles they took part in.



Move Analysis - cont’d

● Looked at each battle state and determined which move was used along its 
corresponding edge

○ Since each move made is the optimal move, we just count up how often each Pokemon used 
each move.

● Chose the 4 most frequent moves as that Pokemon’s moveset



Move Analysis - Some Results

Starmie
Hydro Pump - Water
Thunder - Electric
Psychic - Psychic
Blizzard - Ice

Mewtwo
Psychic - Psychic
Earthquake - Ground
Blizzard - Ice
Hyper Beam - Normal 

Lapras
Hydro Pump - Water
Thunder - Electric
Blizzard - Ice
Waterfall - Water



Situation Analysis

● Given a Pokemon doing battle and its current opponent, which move would 
yield the best results? What’s the confidence that the move leads to a win for 
that Pokemon’s team?

○ Either the move that deals the most damage against its opponent, or a switch
○ Want to find out the effects of the current move on the end result of the battle



Situation Analysis

● There are 50 Pokemon in total
● Not counting “mirror matches,” (Pokemon fighting themselves), there are 

2450 pairs of attacker and defender in total
● For each attacker-defender pair, find all their battles
● For each battle, find the move the attacker uses, walk down the tree,  and 

obtain the result of the whole game
● Calculate the confidence of the move--how often this move leads to a win 

against the defender



Situation Analysis - Results
Attacker Defender Move Confidence

Mewtwo Charizard Rock Slide 0.798153

Mewtwo Raichu Earthquake 0.998177

Mewtwo Arcanine Earthquake 0.796018



Next Steps for future work on this

● Phase 2 of Data Generation
○ Come up with other strategies to compare against our current strategy.
○ See if we can have more branching paths if we move this to a computing cluster for analysis.

● Phase 2 of Pokemon Analysis:
○ Select teams that consist only of top-performing pairs of Pokemon, and generate more battles 

for those teams in order to confirm which one is the best

● Phase 2 of Pokemon next move analysis
○ Create a way to update move analysis with more simulated battles without

restarting the algorithm.



Future Work needed for modern day Pokemon

● There would be a few modifications needed to adapt our algorithms to the 
most recent versions of the game

○ New Pokemon with new abilities would need to be hard-coded in
○ Update the damage dealing algorithm to account for changes in engine



System Architecture
Note that 
PokemonMoveCountAnalysis is 
self contained and doesn’t use 
TeamReader or ReadInDataObj.



Descriptions of Main Functional Components

● Pokemon, Team, Move, and BattleTree objects are used to simulate battles 
and generate data for each battle

● Additional Analysis classes are used to analyze the data
○ Pokemon Analysis (find the Pokemon with the best track records)
○ Move Analysis (find the moves with the best track records)
○ Situation Analysis (find the best move in context)



Experimental Results #1: Top Pokemon



Experimental Results #2: Top Pairs



Experimental Results #3 - Top Teams



Experimental Results #4: Top 4 Moves Each



System API (see README.md in Source Code)

● `./gradlew runDataGenerator` - Simulates battles for teams of 3 found in 
“PokemonToAnalyze” file. Takes in arguments for determining which teams to 
select on and how many battles to simulate.

● `./gradlew runPokemonAnalysis 1` Looks at the battle trees for every 
pokemon in the “PokemonToAnalyze” file and determine the confidence for 
each pokemon, pair of pokemon, or team based on number argument.

● `./gradlew runMoveAnalysis` Looks at the battle trees for each pokemon to 
determine how often each move is used to determine the four most common.

● `./gradlew runNextMoveAnalysis` Looks at the battle trees for 
each pokemon to determine what move to use against the
opponent and the confidence that it leads to a win



Data Structures

● To help with quick indexing, almost everything is stored in memory as a hash 
map, generated from a JSON file.

○ O(1) fetching since it’s by ID, and is predetermined when data was generated.

● Also used Multi-Threaded runnable tasks for all the analysis code so that we 
can eventually port this to work on a cluster instead of a single computer.

○ Data Generation is not as thread safe due to the complexity of that code.



Sample Outputs - Pokemon Analysis Output
$ ./gradlew runPokemonAnalysis -Dexec.args=3
:compileJava UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE
:runPokemonAnalysis
[Blastoise Sandslash Starmie], 0.8890356671070013
[Blastoise Lapras Machamp], 0.8841544607190412
[Blastoise Kangaskhan Kingler], 0.6849087893864013
[Blastoise Mewtwo Kingler], 0.8546875
[Blastoise Jolteon Kangaskhan], 0.8378839590443686
[Raichu Snorlax Venusaur], 0.7496087636932708
...
BUILD SUCCESSFUL



Sample Outputs - move-analysis.json
…
"Mewtwo" : {
    "Psychic" : 666,
    "Thunder" : 73,
    "Earthquake" : 521,
    "Rock Slide" : 222,
    "Hyper Beam" : 259,
    "Blizzard" : 525,
    "Double-Edge" : 215,
    "Fire Blast" : 88
  },
…



Sample Outputs - next-move-analysis.json
…
,{"attacker":"Sandslash","defender":"Electrode","move":"Earthquake","confidence":0.86427598
72900591}
,{"attacker":"Mewtwo","defender":"Muk","move":"Psychic","confidence":0.9982911825017088}
,{"attacker":"Sandslash","defender":"Jolteon","move":"Thrash","confidence":1.0}
,{"attacker":"Blastoise","defender":"Articuno","move":"Rock 
Slide","confidence":0.9086193745232647}
,{"attacker":"Mewtwo","defender":"Electrode","move":"Thrash","confidence":1.0}
,{"attacker":"Sandslash","defender":"Dewgong","move":"Rock 
Slide","confidence":0.5081912957140493}
,{"attacker":"Blastoise","defender":"Muk","move":"Earthquake","confidence":0.78641180137128
61}
,{"attacker":"Mewtwo","defender":"Jolteon","move":"Earthquake","confidence":0.9952494061757
72}
...



Good Points and Lessons Learned

● We were continually surprised by the sheer quantity of data generated, and 
had to keep finding ways to prune it down in order to keep processing times 
under control

● We investigated the free AWS service as a way to process data, but the virtual 
machines available to us had less capacity than our personal machines. 

● We have tried some AWS services, but still we need integrate more 
components of AWS services to implement the entire process.  

● We learned how complicated Pokemon battles can get!


